Phytochemistry, 1972, Vol. 11, pp. 3090 to 3091. Pergamon Press. Printed in England.

SAPOTACEAE

MYRICETIN AND MYRICETIN-3-O-L-RHAMNOSIDE FROM THE LEAVES OF MADHUCA INDICA AND ACHRAS SAPOTA

S. SANKARA SUBRAMANIAN and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research,
Pondicherry-6, India

(Received 13 June 1972. Accepted 21 June 1972)

Key Word Index—Madhuca indica; Achras sapota; Sapotaceae; flavonols; myricetin; myricetin-3-O-L-rhamnoside.

Plant. Madhuca indica J. F. Gmel (Voucher specimen No. 4/72 deposited at JIPMER) (Syn. M. latifolia Maeb., Bassia latifolia Roxb.) Uses. Medicinal, commercial. Previous work. Sterol, triterpene esters and a myricetin-like flavone, on sister species. Present work. Flavonols of the leaves.

The total flavonoid in the concentrate of the hot 80% EtOH extracts of fresh leaves was fractionated by partition between water and organic solvents.

Ether extract. Myricetin and quercetin (characteristic colour reactions, λ_{max} , acetyl and methyl derivatives, R_f values and co-chromatography with authentic samples).

EtOAc extract. A pale yellow solid (0.15%), m.p. $196-197^{\circ}$, $[\alpha]_{D}^{30}-147.5^{\circ}$ (c 0.8 in MeOH), λ_{max} (nm) 256, 300 (b), 352 (MeOH); 268, 359 (NaOAc); 268, 419 (AlCl₃) and 260, 297 (b), 375 (NaOAc + H₃BO₃). The NMR spectrum of the glycoside could not be taken as it was practically insoluble in CDCl₃, CD₃COCD₃ and CF₃COOH. It yielded a crystalline acetate (Ac₂O + Py), m.p. $140-141^{\circ}$ and a methyl ether (Me₂SO₄ + K₂CO₃ in Me₂CO, 70°, 36 hr), m.p. $136-137^{\circ}$ (deep blue under UV). The glycoside was purple under UV changing to yellow with NH₃, showed typical colour changes with alkaline reagents similar to myricetin and gave green colour with Fe³⁺. On treatment with 5% H₂SO₄ for 1 hr or 1 N HCl for 5 min at 100° , it yielded myricetin and L-rhamnose in the molar ratio of 1.04:1.0. It was unaffected on treatment with 2% HOAc for 2 min at 100° , indicating that it was a monoglycoside.

The glycoside methyl ether on hydrolysis yielded 5,7,3',4',5'-penta methyl myricetin, m.p. 226–227°, Fe³⁺-light pink brown, intense golden yellow under UV, λ_{max} 260 (b), 310 (b), 353 (MeOH); 260 (b), 310 (b), 353 (NaOAc); 271, 335 (b), 419 (AlCl₃) and 262, 305 (b), 355 (NaOAc + H₃BO₃), and yielded a monoacetyl derivative, m.p. 196–197° (light yellowish brown under UV). From the above data, the glycoside was identified as myricetin-3-O-L-rhamnoside.

The EtOAc mother liquor, after the separation of myricetin rhamnoside, on PC showed two additional spots which were identified as myricetin-3-arabinoside and quercetin-3-galactoside by R_f , products of hydrolysis and direct comparison with authentic samples.

¹ B. MUKERJI, Indian Pharmaceutical Codex, Vol. I, C.S.I.R., New Delhi (1953).

² Wealth of India, Raw Materials, Vol. VI, p. 207, C.S.I.R., New Delhi (1962).

³ S. C. Bhatnagar, Y. C. Awasthi and C. R. Mitra, *Phytochem.* 11, 465 (1972); and references cited therein.

Plant. Achras sapota L. (Voucher specimen No. 5/72 deposited at JIPMER) (syn. Mimusops manilkara Don.) Uses. Edible fruit.⁴ Previous work. Polyphenols of immature fruits.⁵ sterol and triterpenes of fruit.⁶ triterpenoids of leaves:⁷ no work on flavonols.

Present work. Isolation of myricetin and myricetin-3-O-L-rhamnoside (0.1%) from fresh leaves. Quercetin also identified. Working up and identification as in the case of M. indica above.

Acknowledgement—We thank Dr. T. R. Govindachari, Director, CIBA Research Centre, Bombay-63 for the spectral data.

- 4 Wealth of India, Raw Materials, Vol. I, p. 23, C.S.I.R., New Delhi (1948).
- ⁵ A. G. MATHEW and S. LAKSHMI NARAYANA, Phytochem. 8, 507 (1969).
- ⁶ G. MISRA and C. R. MITRA. Phytochem. 8, 249 (1969).
- ⁷ G. MISRA, S. K. NIGRAM and C. R. MITRA, Phytochem. 8, 2255 (1969).

Phytochemistry, 1972, Vol. 11, pp. 3091 to 3092. Pergamon Press. Printed in England.

SOLANACEAE

ANTHRAOUINONES AND OTHER CONSTITUENTS OF FABIANA IMBRICATA

J. E. KNAPP, N. R. FARNSWORTH*, M. THEINER† and P. L. SCHIFF, JR.

Department of Pharmacognosy, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A.

(Received 1 June 1972. Accepted 5 June 1972)

Key Word Index—Fabiana imbricata; Solanaceae; n-alkanes; fatty acids; erythroglaucin; physcion; aceto-vanillone.

Plant. Fabiana imbricata Ruiz and Pavon. Source. S. B. Penick & Co., New York, Lot No. 913-BJM-1. Uses. A medicinal in South America, where the plant is commonly known as Pichi-Pichi. Previous work. On twigs, on twigs and terminal branchlets, on tops and twigs, on F. denudata, on F. squamata.

- * Professor and Chairman, Department of Pharmacognosy and Pharmacology, College of Pharmacy, University of Illinois at the Medical Center, Chicago, Il. 60680, U.S.A.
- † Department of Biochemistry, School of Dental Medicine, University of Pittsburgh, PA 15213, U.S.A.
- ¹ Homeopathic Pharmacopeia of the U.S., 6th Edition, p. 281, Boericke & Tofel, Philadelphia (1941).
- ² G. R. EDWARDS and H. ROGERSON, Biochem. J. 21, 1010 (1927).
- ³ O. E. EDWARDS and N. F. ELMORE, Can. J. Chem. 40, 256 (1962).
- ⁴ M. SILVA, R. STUCK and P. MANCINELLI, Biol. Soc. Chilena Quim. 12, 29 (1962).
- ⁵ N. K. RICHTMYER, Carbohyd. Res. 12, 233 (1970).
- ⁶ L. FLORIANI, Rev. Centro Estud. Farm. Bioquim. 25, 60 (1934); Chem. Abs. 30, 6784 (1936).
- ⁷ G. B. MARINI-BETTÒLO, Ann. Chim. Applicata 38, 305 (1948); Chem. Abs. 46, 6854 (1951).